Response of CH4 and N2O Emissions and Wheat Yields to Tillage Method Changes in the North China Plain
نویسندگان
چکیده
The objective of this study was to quantify soil methane (CH(4)) and nitrous oxide (N(2)O) emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm) in the North China Plain. The relationships between CH(4) and N(2)O flux and soil temperature, moisture, NH(4) (+)-N, organic carbon (SOC) and pH were investigated over 18 months using a split-plot design. The soil absorption of CH(4) appeared to increase after conversion from no-tillage (NT) to subsoiling (NTS), from harrow tillage (HT) to subsoiling (HTS) and from rotary tillage (RT) to subsoiling (RTS). N(2)O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP) of CH(4) and N(2)O increased by approximately 0.05 kg CO(2) ha(-1) for HTS, 0.02 kg CO(2) ha(-1) for RTS and 0.23 kg CO(2) ha(-1) for NTS. Soil temperature, moisture, SOC, NH(4) (+)-N and pH also changed after conversion to subsoiling. These changes were correlated with CH(4) uptake and N(2)O emissions. However, there was no significant correlation between N(2)O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.
منابع مشابه
Greenhouse Gas Flux and Crop Productivity after 10 Years of Reduced and No Tillage in a Wheat-Maize Cropping System
Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced til...
متن کاملEffect of controlled drainage in the wheat season on soil CH4 and N2O emissions during the rice season
The effect of draining crop fields during the wheat season on the soil CH4 andN2O emissions during the rice season in this article. There were four treatments:traditional cultivation during the wheat season + cultivation without fertilizationduring the rice season (CK1 field), traditional cultivation during the wheat season +traditional cultivation during the rice season (CK2 field), draining t...
متن کاملIntegrative impacts of soil tillage on crop yield, N use efficiency and greenhouse gas emission in wheat-corn cropping system
Wheat-corn cropping system is one of the most important grain production systems in theworld. However, the integrative impacts of soil tillage on crop yield, N use efficiency (NUE)and greenhouse gases (GHGS) emissions are not well documented in this system. Thus, a twoyear field experiment was carried out in a typical wheat-corn cropping system with four tillageregimes during the wheat season, ...
متن کاملImpacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A meta‐analysis
Requirements for mitigation of the continued increase in greenhouse gas (GHG) emissions are much needed for the North China Plain (NCP). We conducted a meta-analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area-scaled total GHG balance, and t...
متن کاملEvaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China
Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O) emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and ...
متن کامل